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,Random sequential addition (RSA) of hard objects is an irreversible process 
defined by three rules: objects are introduced on a surface (or a d-dimensional 
volume) randomly and sequentially, two objects cannot overlap, and, once 
inserted, an object is clamped in its position. The configurations generated by 
an RSA can be characterized, in the macroscopic limit, by a unique set of dis- 
tribution functions and a density. We show that these "nonequilibrium" RSA 
configurations can be described in a manner which, in many respects, parallels 
the usual statistical mechanical treatment of equilibrium configurations: 
Kirkwood-Salsburg-like hierarchies for the distribution functions, zero-separa- 
tion theorems, diagrammatic expansions, and approximate equations for the 
pair distribution function. Approximate descriptions valid for tow to inter- 
mediate densities can be combined with exact results already derived for higher 
densities close to the jamming limit of the process. Similarities and differences 
between the equilibrium and the RSAconfigurations are emphasized. Finally, the 
potential application of RSA processes to the study of glassy phases is discussed. 
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1. I N T R O D U C T I O N  

A variety of physical, chemical, biological, and ecological problems can be 
modeled as random sequential additions (RSA) of objects. (1 12) An RSA 
process is defined by the following three rules: (i) objects are adsorbed on 
a surface (or more generally inserted in a d-dimensional volume) randomly 
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and sequentially, (ii) two objects cannot overlap, and (iii) once inserted, an 
object is clamped in its position, that is, it can neither move on the surface 
nor be removed. The latter rule implies that RSA is an irreversible process. 
The properties of the configurations of objects produced by RSA are thus 
different from those of equilibrium systems which can be described by 
means of usual statistical mechanics/TM Both RSA and equilibrium may be 
viewed as limiting cases of real adsorption or addition processes: in the 
"equilibrium" case, the assembly of objects relaxes rapidly to equilibrium 
between two successive additions, whereas in RSA it remains immobile. (~3) 
Time scales are thus crucial for determining the applicability of the RSA 
model. The RSA is well suited, for instance, for describing the adsorption 
of latexes or proteins on solid surfaces under some conditions. Very often, 
activation energies are much higher for the desorption process than for the 
adsorption process, and the adsorbed particles stick on the surface and 
diffuse very slowly, so that on the time scale of an experiment desorption 
and diffusion are negligible. ~6'7'~2) 

The RSA model has been widely studied analytically a s  well 
as by computer simulations. Most of the studies considered lattice 
models,(~ 3.11,13,15-20) but instead we focus here on a continuous description 
of space: the systems of adsorbed objects represent the RSA counterparts 
of the familiar hard-disk, hard-sphere, etc., fluids at equilibrium. The 
results so far obtained for such processes may be summarized as follows. 
An RSA process asymptotically reaches a jamming limit, in which no more 
objects can be introduced. The corresponding saturation density is known 
exactly in one dimension ~21) and is derived from computer simulations in 
two and three dimensions. (4'6'7'22 26) Some features of the asymptotic 
approach to the jamming limit can be determined analytically. (22'2~28) 
The one-dimensional case, known as the parking problem, is exactly 
solvable, (3'~3~ and, in two dimensions, an approximate description is 
available for the short-time/low-density regime. (29) Additional insight is 
provided by several computer simulation studies (7'9"22'29) and, in particular, 
by a geometrical description of two-dimensional RSA configurations close 
to the jamming limit by Hinrichsen etal.  ~22~ But still no systematic 
approach to RSA processes associated with a continuous description of 
space has been yet proposed. 

The main goal of this paper is to provide a systematic description of 
such RSA processes and of the configurations of objects created by RSA. 
We have noted that RSA and equilibrium correspond to two limiting, and 
in a way opposite, situations. Parallels and differences between the two 
situations were first emphasized by Widom, (13) and we try here to pursue 
the comparison as far as possible. Some of the most powerful tools of equi- 
librium statistical mechanics cannot be used in the study of RSA configura- 
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tions. However, simple probabilistic and geometric arguments apply in the 
context of nonequilibrium as well as equilibrium situations. (3~ Working 
along these lines, we show that RSA configurations can be described 
exactly by means of a hierarchy of equations for the distribution functions 
which is analogous to the Kirkwood-SaIsburg (KS) hierarchy for systems at 
equilibrium. (32/ Some exact results, denoted zero-separation theorems, are 
derived. 

The KS-like hierarchy is not exactly solvable in general and 
approximate solutions are needed. Our approach rests on the observation 
that the kinetics of an RSA process can be roughly divided into two 
regimes: an asymptotic regime associated with the slow approach to the 
jamming limit and an "initial" regime corresponding to low to intermediate 
densities of adsorbed objects. Since analytic results are already available for 
the asymptotic/high-density regime, we focus on the initial regime. We 
expect that a good description of the RSA process over the entire density 
range can be attained by combining the exact results for high densities 
close to the jamming limit with approximate solutions obtained for low to 
intermediate densities. Here we develop treatments capable of providing 
approximate solutions: they consist in density and diagrammatic expansions, 
as well as an approximate (Percus-Yevick-like) equation for the pair 
distribution function. Parallelism with equilibrium statistical mechanics is 
striking and, at each step of the treatment, we note differences and 
similarities between equilibrium and RSA results. Finally, we discuss the 
potential application of RSA processes to the study of (nonequilibrium) 
glassy states. 

2. D E R I V A T I O N  OF A KS-L IKE H I E R A R C H Y  

In this section, we derive an exact hierarchy of equations character- 
izing the RSA of hard objects with a spherical symmetry (hard disks, hard 
spheres, etc.). We use the language of two-dimensional systems, namely 
adsorption of hard disks of diameter ~ on a flat uniform surface, which we 
find easier to visualize, but the results are directly applicable to any dimen- 
sion. The kinetics of the RSA is studied as usual by starting at time t = 0 
with an empty surface placed in contact with a "bulk phase" of particles, 
and by assuming that the irreversible adsorption of a particle on an empty 
surface, i.e., in absence of excluded surface effects, is characterized by a rate 
constant ka (note that in a computer simulation, ka t is related to the num- 
ber of attempts made to add disks on the surface and is thus discretized). 

An RSA process produces random disordered configurations, (13) and 
in the macroscopic limit where both the number of adsorbed disks and the 
area of the surface become infinite while the number density p stays finite, 
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all genera ted  conf igurat ions  of adso rbed  objects  are character ized,  a t  any 
given t ime t, by a unique densi ty  p(t) and a unique set of d i s t r ibu t ion  func- 
t ions {g,(1,...,  n; t)}, where 1 ..... n is a shor t -hand  no ta t ion  for the pos i t ion  
vectors rx ..... rn. 4 Moreover ,  the system formed by the adso rbed  objects is 
macroscopica l ly  uniform (homogeneous  and  isotropic) .  

F r o m  a microscopic  po in t  of view, the kinetics of the RSA process is 
not  only  represented by the t ime evolut ion  of the densi ty  p(t), but  more  
general ly  by the t ime evolu t ion  of the typical  configurat ions.  We thus look  
for a h ierarchy of equat ions  to be satisfied by  the densi ty  and the var ious  
d i s t r ibu t ion  functions. 

As previously  shown, (29) the increase with time 
adso rbed  disks is governed by the fol lowing equat ion:  

of the densi ty of 

d 
s ) (1) 

where ~ ( t )  is the fract ion of the total  surface which at  t ime t is avai lable  
for the center of a new adsorb ing  disk. Because of the macroscopic  unifor- 
mi ty  of the system, q~ also represents  the p robab i l i ty  that  a r o u n d  any 
pos i t ion  r l  there is a region with a d iameter  of at  least 2~ which is free 
from any center of p readso rbed  disks. It is given by 

p(t)" (. . .  f d2 ...d(s + 1) f 1 2 " "  f l ( s  + l ) ~ ( t ) = t b ( 1 ;  t ) =  1 + s r 0 
s = l  

• g , (2  ..... ( s +  1); t) (2) 

where each integral  is t aken  over  the whole surface and f 0 = f ( t r , - r j I )  is 
a M a y e r  f - func t ion  for hard  bodies  and is thus equal  to ( - 1 )  when 
[ r i - r j l  < ~  and to 0 otherwise.  Equa t ions  (1) and  (2) were der ived by 
means  of geometr ic  and  probabi l i s t ic  a rguments  which we now apply  to 
the t ime evolu t ion  of the d is t r ibu t ion  functions. Ins tead  of repeat ing  the 

4 A heuristic argument in favor of the unicity of the density and set of distribution functions 
for RSA configurations considered at a given time t is obtained by applying the well-known 
device used in equilibrium statistical mechanics to show that the relative fluctuations of all 
physical additive quantities decrease as the inverse of the square root of the volume (or sur- 
face in 2d) of the system (e.g., ref. 33; see also, in the context of a nonequilibrium situation, 
ref. 34): a very large but finite surface is divided into a large number of subsystems, the size 
of which is much larger than any typical characteristic length of the problem. Edge and 
interface effects can be neglected so that, at a given time t, the configurations of objects in 
each subsystem can be considered as produced by independent RSA processes. Use of the 
central limit theorem then ensures that the fluctuations of the quantities like the density p(t) 
(and all particle densities for uniform systems) go as the inverse of the square root of the 
total area of the surface. 
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proof of Eqs. (1) and (2), which can be found elsewhere, (29'3~ we detail 
the steps for deriving a similar equation for the pair distribution function. 
p(t) 2 g2(1, 2; t) is the two-particle density characterizing the configuration 
at time t: p(t) 2 g2(1, 2; t ) d r  I dr2 is thus equal to the probability that the 
center of one (unspecified) particle is in dr1 around rl and the center of one 
(unspecified) particle is in dr 2 around r 2. Due to the irreversibility of the 
RSA process, the two-particle density, whatever the positions r I and r 2 are, 
can only increase with time. Creation of new pairs between times t and 
t + dt is achieved by adsorption of a disk at point r 2 conditional on the 
presence of a preadsorbed disk at point rl or adsorption of a disk at point 
r~ conditional on the presence of an already adsorbed disk at point r2. The 
rate at which the two-particle density increases may then be written as 

0 2 
-~p(t)  g2(1, 2; t )=  ka[~b(1 12; t )+  4(21 1; t)] (3) 

where ~(i lJ ;  t) is the density of disks centered at point r i given that space 
is still available at the point rj for the center of a new adsorbing disk. 
Because of the macroscopic properties of the system (isotropy and 
homogeneity), ~( i l j ;  t) is actually a function of the distance I r i - r j l  only 
and is invariant under the permutation ir162 In the limit of vanishing den- 
sities (t--* 0, p ~ 0 ) ,  ~(i lJ ;  t) is simply equal to the average density p(t) if 
I r / - r j I  >or and is equal to zero otherwise. However, when the density 
increases, one has to take into account the fact that the environment of the 
disk centered at r / i s  already crowded by other disks and that adsorption 
of a new disk at rj may be precluded by the presence of one, two, or more 
disks. These latter disks are those whose centers are located within a circle 
of diameter 2a around rj: cf. Fig. 1. Then ~(i lJ ;  t) can be expressed as 

~ ( i l j ; t ) = p ( t ) -  ~ pr(i]j;t) ,  [ri--rj l>cr 
,=1 (4)  

=0,  I r , - b l  < ~  

where pr(ilj; t) is the density of particles centered at r~ given that the 
centers of exactly r disks are located within the circle of diameter 2or 
around r i. Using a procedure outlined by Reiss et al. (35) and Torquato and 
Stell, (36) we can rewrite Eq. (4) as 

qs(ilj; t) = p(t) - [p~(ilj; t) + 2p2(ilj; t) + 3p3(ilj; t) + . . .]  

+ [p2(i[j; t )+ 3p3(ilj; t) + 6p4(ilj; t) + . . .]  . . . .  

= p ( t ) +  L (--1) s L C~rpr(ilj;t), ] r i - r j l > f f  
s = l  r = s  
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Fig. 1. A disk of diameter a has an associated exclusion disk of diameter 2a from which the 
centers of other disks are excluded. The presence of the two disks centered at k and l thus 
prevents the adsorption of a new disk whose center would be at j. 

where C~ denotes a binomial coefficient. Equat ion (5) is easily interpretable 
by noting that [pi(ilj; t) + 2pz(ilj; t) + 3p3(ilj; t) + . . .  ] dr, is the average 
number  of pairs such that the center of one particle is in dri a round  ri, 
while the center of the other one lies within 2a of r j, and that, more  
generally, 

I ~, C:p,(ilj; t); dr~ 
r=s 

is the average number  of (s + 1)-tuplets such that  the center of one particle 
is in dri around  r, and the centers of s particles lie within 2a of r i. Equa-  
tion (5) proceeds by successive corrections, providing alternately upper and 
lower bounds  to ~b(ilj; t). Taking now into account  the definitions of the 
Mayer  f-funct ions and the distribution functions, we obtain an expression 
for the average number  of (s + 1)-tuplets which leads to 

s = l  S! 

xf dk,...dk, fjk,...fjk, g,+,(i,k, ..... k,;t)} (6) 

where (1 + ~ )  is a geometric factor which ensures that @(iIj; t) is zero 
when Lr i - r j [  < m  Notice that due to the fact that  Mayer  f-functions are 
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negative, the series in Eq. (6) is alternate, as it is in Eq. (5). Combination 
of Eq. (6) and Eq. (3) provides the expression we seek for the pair distribu- 
tion function. 

The preceding method can be easily applied to the n-particle distribu- 
tion function. With p(t) ~ g~(1 ..... n;t) dr~ ...dr~ the probability that the 
center of one (unspecified) particle is in dr~ around rl,..., and the center 
of one (unspecified) particle is in dr,, around rn, the rate at which the 
n-particle density p(t) n g,(1 ..... n; t) increases with time is given by 

-~p(t) g,(1 ..... n ; t ) = k  a ~ q~(1, . . . , i - l , i+l , . . . ,n l i ; t )  (7) 
i = l  

where ~b(1,..., i -  1, i +  1,..., n j i; t) is the density of ( n -  1)-tuplets centered 
at rl,..., ri 1, ri+l,.--,rn, such that space is still available at the position 
ri for the center of an nth disk. A straightforward generalization of 
Eq. (4)-(6) leads to 

4(1 ..... i -  1,..., nli; t) 

r rj...j d(.+ , ) . . .  
S! j - - I  s--O 

j@ i  

x d(n + s)f~,+ 1).-- f,> +,)g,,+s- 

x (1 ..... i -  1, i+  1 ..... n, n +  1 ..... n+s; t) (8) 

where [ I  n (1 + f0) is a simple geometric factor, equal either to 1 or j = l , j r  

0, which ensures that the nth disk introduced at ri will not overlap with the 
( n -  1) disks already adsorbed. In writing Eq. (8), we chose the convention 
that the s = 0  term reduces to p(t) n-~ g,_t(1,..., i -  1, i +  1 ..... n; t). 

The preceding equations--Eqs. (1), (2); (3), (6); and (7), (8),--form a 
hierarchy and provide a full microscopic description of the kinetics of the 
RSA process. This hierarchy derived for hard isotropic objects can be used 
to describe the RSA of hard anisotropic objects: the arguments i, j ..... of all 
functions refer then to the positions and orientations (ri, (2,), (rj, (2j),..., 
and, accordingly, the integrations are taken over positions and orienta- 
tions. 

Connection with the statistical mechanical description of equilibrium 
fluids is made by taking advantage of the one-to-one mapping which exists 
for the RSA process between the time, t ~ [0, + oo[, and the density of 
adsorbed particles, p e [0, p~[, where p, is the saturation density at the 
jamming limit. Using then the identity 

at ko~(p) ~ (9) 
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which is a direct consequence of Eq. (1), together with defining new 
functions S,(1,..., n; p) as 

$1(1; p) = SI(p) = r (10a) 

'pn-lS,(1 ..... n;p)=-I ~ qb(1,...,i-l,i+l,...,n[i;p) (10b) 
n i = l  

where the various r are given by Eqs. (2), (3), and (8), we derive from 
Eqs. (7) and (8) the following hierarchy of equations: 

1 ~ S~(1,...,n;p) 
[p~g,(1,...,n;p)]- , n~>l ( l l )  npn 1 Op SI(p) 

with 

S~(1 ..... n;p) 

1 (1 +Zj) ~ .  . . .  d(n 
n i = 1  j = l  s =  

, ] r  

+ 1)'"d(n+s)fi(~+ll. . .  

x f~(n+s) gn+s 1(1 ..... i--1, i + 1  ..... n ,n+l  ..... n +s;  p)} (12) 

Because of geometric constraints on the packing of impenetrable objects, 
the sum over s present in the right-hand-side of Eq. (12) can be actually 
restricted to a small finite number of terms: 2 in one dimension, 6 in two 
dimensions, 12 in three dimensions, etc. 

By analogy with the equilibrium situation, we call Eqs. (11), (12) the 
Kirkwood-Salsburg-like hierarchy for the RSA distribution functions. 
Justification for this terminology is found by noting that the Kirkwood- 
Salsburg (KS) hierarchy for an equilibrium ensemble (32) can be written as 

s~,q(1 ..... n; p) 
g~q(1,...,n;p)- , n>~l (13) 

s]q(p) 

when using the well-known relation between the thermodynamic activity z 
and s]q(p): 

s ? ( p )  = r176 = p/z (14) 

eq S, (1,..., n; p) is expressed in terms of the distribution functions eq gn+s !, 
s>~0, by an equation formally identical to Eq. (12). For an equilibrium 
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ensemble, all the n terms of the sum over i are identical, so that Eq. (12) 
may be simply replaced by 

f eq ... d ( n + l ) . . . d ( n + s )  sn (1 ..... n; p ) =  (1 + flj)  
j = 2  s = 0  

xA~,+l~...A~,+~)geq+s , (2 , . . . ,n+s;p)  (15) 

Such a simplification is impossible in the RSA case: the distribution func- 
tion gn(1,..., n) is of course invariant under any permutation of 1 ..... n; 
however, because of the irreversibility of the RSA process, the order in 
which particles are adsorbed on the surface must be taken into account 
explicitly. 

According to Stell's language, (3~ Eqs. (11) and (13) provide two 
examples of different "closure relations" for KS-like hierarchies. The 
specific irreversible kinetics of the RSA process leads to an additional term, 
namely 

p ~  
- - - g , ( 1 , . . . , n ; p )  
n Op 

in the left-hand-side of the "closure relation." 
Finally, connection can be made between the preceding results and the 

various hierarchical rate equations used in the context of lattice models. 
For instance, in studying distributions of adatoms resulting from dis- 
sociative adsorption of a diatomic gas on a two-dimensional lattice, 
Hoffman derived a hierarchy of equations for the distribution functions 
which is analogous to what we have called the Kirkwood-Salsburg-like 
hierarchy. (15) Interestingly, Hoffman's derivation of the hierarchy was 
based on a method quite different from that used in the present paper. The 
adsorption process on the lattice was assumed to be activated and equa- 
tions for the distribution functions were obtained from a kinetic equation 
written in the framework of the grand-ensemble theory. More recently, 
Evans (37) mentioned that the hierarchical rate equations he had previously 
written for lattices (11'j6'~7) could apply to the continuum case in order to 
give the first terms of the density expansion of ~b(p) = S~(p): in such a case, 
the hierarchies directly provide equations for the successive time derivatives 
of p and ~. As expected, it can be easily checked that Evans' equations can 
be recovered by means of the above Eqs. (9)-(12). 

3. ZERO-SEPARATION T H E O R E M S  

We introduce now the functions yn(1 ..... n; p) obtained as analytic con- 
tinuations over the whole space of the particle distribution functions 

822/63/1-2-12 
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g,(1 ..... n; p) by following the same prescription as for an equilibrium 
ensemble of hard objects(3~ yn(1,..., n; p) is similar to the n-particle 
distribution function g,(1 ..... n; p) except that the geometric constraint due 
to the hard-core interactions between the n particles (no overlap between 
particles) is released. As a consequence, 

g,,(1 ..... n; p ) =  ]21 12I (1 + fu )  y,(1 ..... n; p) (16) 
i = l j = l .  

j > i  

According to the above definition, the Yn can be obtained in a unique way 
either in the framework of a grand-ensemble theory or by following the 
treatment of the preceding section and discarding at each step the 
geometric constraint between the "particles" under consideration. This 
latter procedure leads then to the following hierarchy of equations: 

1 0 
p"yn(1 ..... n; p) np"- 1 Op 

dln+ 

x 1-I [I ( l+f jk)  y ,+s_~(1, . . . , i - - l , i+l , . . . ,n+s;o)  (17) 
j = l  k = n + l  
j ~ i  k > j  

S t ( p ) =  1 +s~=, ... d2 . . .d(s+ 1)f ,2- .  "fl(,+,) 

s + l  s + l  

• [ l  l~ ( l+f jk)ys(2 , . . . , s+l;p)  (18) 
j - - 2  k - - 2  

k > j  

Equations (17) and (18) can be considered as defining the y,  and it is easy 
to check by comparing Eqs. (11) and (12) with Eqs. (17) and (18) that 
Eq. (16) is indeed satisfied. The preceding equations represent the KS-like 
hierarchy for the functions y, ,  which differs from its equilibrium counter- 
part in the "closure relation," that is, in the left-hand side of Eq. (17). 

For equilibrium systems, the y ,  have a simple geometric and 
eq probabilistic interpretation: y ,  (1 ..... n;p) is the n-cavity distribution 

function, so that (S~q)" y]q(1 ..... n; p)drl  . . .dr ,  is the probability that 
the center of one cavity (of diameter 2a, free of any center of particle) 
is in dr1 around r~,..., and the center of one cavity is in dr ,  around r,,. Such 
an interpretation is not valid for RSA configurations. Using probabilistic 
arguments, one can indeed define, in addition to the particle distribution 
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functions, the cavity distribution functions and some mixed cavity/particle 
distribution functions. However, these functions do not coincide, even 
outside the "core" defined by gn =0. For RSA systems, the Yn are thus 
analytic continuations of the particle distribution functions, but they are 
not equal to the cavity distribution functions. 

The preceding KS-like hierarchy is a convenient starting point for 
deriving various "zero-separation theorems. ''(3~ Consider for instance 
Eq. (17) applied to y2(12;p) with the condition that r~ =r2. All terms of 
the right-hand side associated with s > 1 contain products like flj(1 +f~j), 
j =  3,..., s+2 ,  which are identically zero for hard objects of spherical 
symmetry. Equation (17) reduces then to 

1 ~0 1 
- - - - p 2 y 2 ( 1 1 ; p ) -  
2p ~p S~(p) 

which can be formally solved to give 

P' 
y2(11; P) = p2~ dP's,(p,~-- ~ 

(19) 

(20) 

Equation (19) or, equivalently Eq. (20), represents the first zero-separation 
theorem. It provides a new way to calculate SI(p), the fraction of the total 
surface or volume which is accessible to the center of a new particle, which 
requires only knowledge of y2. 

The treatment can be applied to higher-order functions. We obtain 
then 

1 ~3 yn_ 1(1, 1 ..... 1 ;p )  pny,(1, 1,..., 1 ;p )=  (21) npn- 1 ~p SI(p) 

which can be solved to give 

n! f~ l foq 1 y~(1, 1,..., 1" p) = ) - ~ ,  d p l S ~ l  ) dp2--"Sl(p2) 

~ Pn-2 
x dp,, 1 Pn-- 1 (22) 

"0 SI(Rn - 1) 

The simplicity of the zero-separation theorems for equilibrium cavity dis- 
tribution functions is lost. For instance, the relation between y3(111; p) and 
y2(ll; p) takes the form 

y3(l l l ;  p ) = ~  y2(ll; p)2 + dc~2y2(ll;~p) 2 (23) 
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instead of y ;q ( l l l ;  p ) =  y~q(11; p)2 obtained in the equilibrium case. (3~ 
The complexity of Eq. (23) casts some doubts on all possible superposition 
approximations for Y3(123)- 

As in equilibrium statistical mechanics, (39 41) the preceding zero- 
separation formulas may prove interesting either to check and improve 
approximate treatments of the various distribution functions or, once an 
approximate y2(12) is obtained, to calculate SI(p). 

4. D I A G R A M M A T I C  EXPANSIONS 

Having derived an exact hierarchy of equations for describing RSA 
configurations, we now face the problem of looking for solutions. Exact 
solutions are of course out of reach: we will see that even in one dimension, 
only a partial, though exact, solution was found. For RSA on lattices, 
different kinds of approximate truncations of exact hierarchical equations 
have been proposed, (u'19) but they are not easily transposable to the con- 
tinuum case studied here. The approach we suggest rests on the observa- 
tion that an RSA process can be roughly divided into two regimes: the 
slow asymptotic approach to the jamming limit, corresponding to "high" 
densities, and an initial regime, corresponding to "low to intermediate" 
densities. Rather than looking for a single method of approximation which 
tries to account for the features of both regimes, a more tractable and 
perhaps more powerful procedure is to study the two regimes separately. 
Using the fact that RSA systems do not undergo phase transitions, the 
results derived independently for the two regimes can then be combined to 
provide a description of the whole time/density range. Such a procedure 
was applied with some success to the two-dimensional situation where 
accurate interpolation formulas were given for the density dependence of 
r ~ S l (p ) .  (14'37) 

In the asymptotic regime, the available surface consists of small dis- 
connected areas, usually refered to as targets, which can accommodate the 
center of one additional particle only (this property can indeed be viewed 
as defining the asymptotic regime). Properties of the regime are derived by 
the distribution of targets as a function of time. Analytical results have 
already been obtained by Pomeau, Swendsen, and others, (22'2~28) and we 
do not repeat the arguments here. We focus instead on the other regime, 
loosely characterized as "initial" and corresponding to low to intermediate 
densities (relative to the saturation density at the jamming limit). 

One way to generate approximate solutions is to consider expansions 
in powers of the density. Although it is very unlikely that they converge for 
high densities, such expansions may prove useful for several reasons. It has 
been shown, for instance, that considering the first terms of the density 
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expansion of qS(p) gives a good description of low- to moderate-density 
cases. (29) Moreover, Stell showed for equilibrium fluids that exact and 
approximate integral equations for the pair distribution function can be 
directly obtained from the density, i.e., diagrammatic, expansions. (39) 
Approximate integral equations, such as the Percus-Yevick equation, have 
proved to be powerful techniques in equilibrium statistical mechanics, and 
one can hope the same will be true for the RSA situation. 

We start from the KS-like hierarchy for the functions Yn [the n-par- 
ticle distribution functions are obtained by applying Eq. (16)]. From the 
structure of Eqs. (17) and (18), it can be seen that in order to obtain the 
kth term of the density expansion of y~ it is sufficient to know Yn- 1 up to 
the kth term and all the other distribution functions up to the ( k - 1 ) t h  
term. The coefficients of the density expansions can thus be systematically 
determined, one after another. The starting point is provided by the 
property yl = 1, which is a consequence of the macroscopic uniformity of 
RSA systems of particles. The first terms can then be derived in a 
straightforward manner and we give them below as an illustration: 

+I+++++++)t 
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+~ +@ +~)}+o(~) 

y3(123;p)=l+P +~(@ �9 @+@ @ @+ 

| r o)!.+o(p ~) 
) 

(24) 

(25) 

(26) 

etc. The diagrammatic representation is the usual one, (42~ where all bonds 
are f-bonds. As first noted by Widom, (13) the first three terms, up to p2, of 
the expansion of S~(p) are identical to those of the expansion of the 
equilibrium counterpart S~q(p). For higher-order terms, the RSA and 
equilibrium expansions are different. (13'15'29~ 



Random Sequential Addition 181 

Before giving a more general picture of density expansions for RSA 
configurations, we first recall the results obtained for the equilibrium 
situation. (39'43'44) Using Salpeter's terminology, (44) 

s~q(p)-- 1 -t- ~ pkfl'l(k}eq (27) 
k = l  

y]q(1,...,n;p)=l+ ~ pkfl'n{X)eq(1,...,n ), n>~2 (28) 
k = l  

where fl'l (k)eq is the sum of all "general 1-irreducible" diagrams with k field 
points and fl'n(k)eq( 1,..., n), n >~ 2, is the sum of all "generall ... n-irreducible" 
diagrams with k field points. A general 1-irreducible diagram is defined by 
the condition that each of the k field points is either "multiply connected" 
to point 1 or else is directly connected only to point 1 and to no 
other point. A general 1 ---n-irreducible diagram is such that each of the 
k field points lies on at least one continuous path between at least one 
pair of points selected from 1,..., n. Notice that according to the latter 
definition a general 1..-n-irreducible diagram, n ) 2 ,  is also a general 
1 ... n, n + 1 .. .  n + p-irreducible diagram, p >/1. Equations (27) and (28) 
can be further modified by using the "exponentiation theorem ''~42) and by 
introducing fl~k}eq and (k)eq fin (1 .- .n) as sums of all "simple 1-irreducible" 
diagrams and of all "simple 1-.-n-irreducible" diagrams, respectively. 
Definitions can be found in Salpeter's paper. (44~ We find that 

s~q(p) = exp  pk~k)eq (29) 
k 1 

y:q(1...n;p)=y:q'sa(1...n;p)exp{~ pkfl~k~eq(1..'n)}, n)3 (31) 
k = l  

where yeq'SA(i .. -n;p) is built from all the ym,eq 2~<m ~<n--1, through a 
generalized superposition formula(39'44): 

n--1 I yenq'SA(1 " " "n; P)  ~--~ y 2 E yemq((m}n;P)] {-l)n+m+l (32)  

In the preceding formula, {m}~ denotes any ordered set of m points selec- 
ted from { 1 ..... n }. In one dimension, all simple 1 -.. n-irreducible diagrams, 
for n/> 3, vanish exactly when rl ..... rn belong to the region defined by 

i=1 J= l  j>i 
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because of geometric constraints. The Kirkwood superposition is then 
exact for the particle distribution functions (but not for the cavity distribu- 
tion functions). (39'4~ In higher dimensions, superposition schemes are only 
approximate. 

The formal simplicity of diagrammatic expansions in equilibrium 
statistical mechanics derives from the Gibbs distribution. This simplicity is 
lost when going to RSA configurations. However, it can still be proven that 
the density expansions 

s~(p) = 1 + ~ pk/~'l~*~ (33) 
k = l  

yn(1,..., n; p) = 1 + ~ pk/~'n(k)(1 ..... n), n ~> 2 (34) 
k = l  

correspond to diagrammatic expansions where/?~(~) is a linear combination 
of general 1-irreducible diagrams with k field points and/3'n(k)(1,..., n) is a 
linear combination of general 1.. .  n-irreducible diagrams with k field points. 
The coefficients of the linear combinations are rational numbers. The result 
is not at all obvious, since a priori the coefficients of the density expansions 
(33) and (34) may involve reducible diagrams. Proof is rather lengthy and 
is left for Appendix A. See also ref. 15. Complexity of the RSA situation, 
compared to the equilibrium one, manifests itself in the fact that the coef- 
ficients with which the unlabeled general irreducible diagrams appear in 
/~,(k) or /~'n(~)(1,..., n) are no longer equal to 1 nor even identical to each 
other: compare, for instance, with Eqs. (24) (26). The various coefficients 
satisfy the relations given in Appendix B, but do not lend themselves to 
simple recurrence formulas. The/?,(k) can be expressed formally as 

= n i = l  s= ~ ..- d(n+l) . . .d (n+s) f i ( ,+l l . . . f~ ( ,+s)  

X 1~ E (1 + fie) #'(k- s) ~" n + s- 1,'1,"', i-- 1, i + 1 ..... n + s  
j =  t e = n +  1 ~ k - g e n  
j r  e > k  1 - - , n  irr  

(35) 

where [ ] k - g ~ n . t  .... irr indicates that within the brackets all diagrams 
other than general 1 . . .  n-irreducible diagrams with k field points must be 
discarded. A formula similar to Eq. (35) holds for/~'~(~). 
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Another manifestation of the complexity of the RSA situation is that 
the "exponentiation theorem" cannot be applied. We show in Appendix C, 
by giving counterexamples, that there is no RSA counterpart of 
Eqs. (29)-(32). As a consequence, the superposition approximation is no 
longer exact in one dimension." g3(123; p) and gSA(123; p) are identical up 
to the p term, but differ for higher-order terms. The difference may be small 
for low and intermediate densities, but probably not for high densities close 
to the jamming limit. As we have already mentioned, the physical reason 
is that the system is sensitive to the order in which particles are introduced: 
as it is sometimes stated, the system has an "infinite memory." Contrary to 
the one-dimensional hard-rod system at equilibrium, for which all the dis- 
tribution functions are known exactly, only the pair distribution function is 
known for the one-dimensional RSA system. Moreover, the pair distribu- 
tion function is only known for a~< [rl--r2[ ~<2cr. This is enough to 
determine SI(p) and, through Eq. (1), p(t), but it does not provide a full 
characterization of the one-dimensional RSA configurations. 

5. AN  A P P R O X I M A T E  E Q U A T I O N  FOR ga(12; p) 

Density expansions, such as those described in the preceding section, 
have obvious shortcomings. They probably do not converge for high den- 
sities and moreover they are not a convenient way to obtain a correct 
description of the pair distribution function g2(12; p), a quantity of primary 
interest to characterize RSA configurations. A fruitful alternative, widely 
used in equilibrium statistical mechanics, is to derive integral equations for 
g2(12). Stell ~39) showed that the exact Ornstein-Zernike equation can be 
derived from the diagrammatic expansion; see also ref. 45. Use of different 
closure relations, which corresponds in fact to neglecting different classes of 
diagrams, provides different approximate equations, the most successful for 
hard isotropic objects being the Percus-Yevick (PY) equation. 

At this stage, we mention that we have not been able to derive from 
the diagrammatic expansion, Eqs. (33)-(35), an exact equation for g2(12), 
which would be the RSA counterpart of the Ornstein-Zernike equation. 
We believe this is due to the intrinsic complexity of the RSA statistics. In 
what follows, we thus consider the direct derivation of approximate integral 
equations from Eqs. (33)-(35). Since we focus on approximate integral 
equations, more precisely on a PY-like equation, we do not expect the 
description to be valid in the high-density regime, close to the jamming 
limit: for such a regime, different methods must be employed, which 
predict, for instance, a logarithmic divergence at contact, in any dimen- 
sion. (22,28) 
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The starting point is to rewrite the diagrammatic expansion in terms 
of different classes of diagrams: 

y(12; p) = 1 + S(12; p) + B(12; p) + P(12; p) (36) 

B;(k)(12)=S(k)(12)+B(k)(12)+P(k)(12), k>~2 (37 ) 

where S(~)(12), B(k)(12), and P(k)(12) are linear combinations of 1, 2-series 
diagrams, 1, 2-bridge diagrams and 1, 2-parallel diagrams, respectively, all 
diagrams having k field points. Definitions for these classes of diagrams are 
found, e.g., in ref. 42. A PY-like approximation consists of neglecting all 
bridge and parallel diagrams in Eqs. (36) and (37)(39): 

B(12; p) + P(12; p) _ 0 (38) 

hoping, as in the equilibrium case, that a cancellation of errors makes this 
approximation reasonable, at least for low to intermediate densities? 
Consider then the coefficient S(~)(12): according to Eqs. (35) and (37), it 
can be expressed as 

1 [;'"fd3""d(s-l-2)fi3(1-t-fz3)'"fi(s+a) 
Z s = l  E 

s+2 s+2 ] 

• I] I-[ (1+fSe)/7"k-')(23""S+ 2) 
j = 3  e=3 k-1,2' 

e > k series 

k~>l 

(39) 

which also corresponds formally to 

1 0 
- - - - p 2 S ( 1 2 ;  p) 
2p Op 

Y[f...f dg...d(s+ 2)f13 (1-t-f23)'''fl(s+2)(l-t- f2(,~ + 2) ) 

s+2 s+2 1 
x l~ H (l+fje) Y,+l(Z3""s+Z;P) (40) 

j = 3  e=3 1,2 
e > j series 

S A more rigorous condition than Eq. (38)is to require that (1 +f12)[B(12)+ P(12)] =0, so 
that g2(12)= (1 + f12)[1 + S(12)]. There is no real need for B(12)+ P(12) to be zero within 
the core in order to derive a PY equation: cf. ref. 39. 
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where only series diagrams are retained in the terms within the brackets. 
Note, however, that Eqs. (39) and (40) are exact, whereas in the PY equa- 
tion, the series diagrams are obtained through an approximate formula. In 
the equilibrium case, Eq. (38) is a closure relation for the Ornstein-Zernike 
equation and is thus sufficient to derive the PY equation. In the RSA case, 
for which no Ornstein-Zernike-like equation is available, we need an addi- 
tional condition which specifies the procedure for obtaining an approximate 
S (Pv) (12) directly from Eqs. (39), (40). It is easy to show that in the equi- 
librium case s(PY)(12) is obtained from the KS hierarchy, and thus from an 
equation similar to Eq. (40), by replacing the exact distribution functions 
gs+ 1, s ~> 2, by a generalized Kirkwood superposition approximation: 

s + 2  s + 2  

gs+1(2,3 ..... s + 2 ; p ) ~  I~ 1-[ g2(je;p) (41) 
J - - 2  e = 2  

e > j  

The preceding condition is a consequence of the structure of the series 
diagrams retained in the PY approximation: they are such that between 
two nodal points or between one nodal point and one of the root points 
1 or 2, there may be only an f-bond alone or an f -bond plus a series 
diagram (39'4s) (we recall that a nodal point is a field point through which 
all paths between the root points 1 and 2 pass). Simple topological 
considerations, when applied to the equilibrium counterparts of Eqs. (39) 
and (40), then lead to the condition expressed by Eq. {41). 

We now retain Eq. (41) as the additional condition to derive an 
approximate equation for the RSA case. e Introducing Eq. (41) into Eq. (39) 
provides 

= y, . . . f d 3 . . . d ( s + 2 ) f l ~ ( 1 + A 3 ) ~ ; ~ > ( 2 3 ) . . .  
s = 1 (c~fi) k~B = 0 

s + 2  s + 2  ] 

xfl(,+2)(1 -+-f2(s+2))fl;(k2's+2')(2, s +  2) [ I  1-1 (1 "~ f J ' e )  fl;(e'e)(Je) 
j =  3 e = 3 3 k - 1 , 2  

e > j series 

(42) 

where (aft) denote all ordered pairs built from 2, 3 ..... s + 2, and the sum 
over k ~  is restricted by the condition that ~2(=e)k=~ = k - s .  Consider the 

6 Note that Eq. (41) is by itself a closure relation for the KS-like hierarchy and allows, in 
principle, the determination of g2(12;p) and Sl(p). However, the resulting equation for 
g2(12; p) is very complicated and we do not pursue this direction. 
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general s-term of the preceding formula. It is clear that, in all series 
diagrams with k field points appearing within the brackets, one of the s 
field points 3,..., s + 2  is a nodal point: the kje field points appearing in 
fl'2I~Je)(je), ,with j, e = 3,..., s +  2 and e > j ,  cannot be nodal points since both 
j and e are directly connected to 1 by an f-bond; moreover, if one of the 
kzj field points appearing in fl;(k2,~(2j), j = 3,..., s + 2, is a nodal point, then 
j is also a nodal point. Since the field points are dummy variables, we 
denote by 3 the field point selected from 3,..., s + 2, which is a nodal point. 
Taking into account that none of the remaining ( s - 1 )  field points 
4 ..... s + 2 are connected to 2 by any path other than those passing through 
3, and that when k23 = 0 the point 3 must be connected to 2 by an f-bond, 
we rewrite Eq. (42) as 

(_2_~) S~e)(12) 

= s d3 f13[( 1 +f23)fl;(k2')(23)--aOk23] 
s = 1 ~ '  k23 = 0 

; X (:~fl)~ (23)E k~= 0 "'" d 4 " " d ( s + 2 ) f l a ' " f l ( s + 2 )  

s + 2  s + 2  1 
• [ I  [ I  (1 "~-fje) fll2(kje)(Je) 

j = 3  e = 4  k - -  (k23 + 1) gen 
e > j 1,2-irr 

(43) 

where 5oh is the Kronecker symbol and the sum over k~# is restricted, by the 
condition that Z(~)  k ~  = k - s - k 2 3 .  By permuting the order in which the 
sums over s and k23 are performed, and using Eqs. (35) and (41), we trans- 
form Eq. (43) into 

( ~ - - ~ )  S(k)(12) 

k - - 1  

= E fd3L3[(l+L3)/~;~k2'~(23)-ao~2,] 
k23 = 0 

2 + k -  (k23+ 1) x B;(k-k23+ 1)(13) 
2 

(44) 

Under the conditions (38) and (41), we thus derive a PY-like equation for 
the RSA pair distribution function, which is expressed as 

y2(12; p) = 1 + S(12; p) (45) 
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P ~---fi S(12; p ) S(12; p) + 

= P i d3 fi3[Y2(13;p)-t-P 0-~ - y2(13;p) 1 [( 
L z vp 

1 -t- f23) y2(23; p)--  1] 

(46) 

The difference between Eq. (46) and the equilibrium PY equation is 
contained in the two additional terms involving derivatives with respect 
to p. Because of these latter derivatives, Eqs. (45) and (46) are not easily 
solvable. Indeed, by Fourier transforming Eq. (46), introducing the 
total pair correlation function h(12)= g2(12)- 1, and formally solving the 
differential equation in p, we transform Eqs. (45) and (46) into the following 
equation: 

l +pf~(k;p)=fj dc~exp{p[~.(k;p)-eO(k;c~p)+ f] dcg ((k;c@)]} (47) 

where ((k; p) is the Fourier transform of the PY-like "direct correlation 
function" defined as 

c(r; p) = f ( r ) [1  + S(r)] (48) 

In deriving Eqs. (47) and (48), we used the fact that all pair functions 
depend only on the relative distance r =  Irl-r2l .  The left-hand side of 
Eq. (47) is the RSA "static structure factor": the right-hand side appears to 
be much more complex than its counterpart in the equilibrium PY equa- 
tion, which is simply equal to [1 -pd(k; p) ] - l .  Obtaining exact analytical 
solutions of Eqs. (47) and (48) seems then very doubtful and numerical 
solutions are required. 

Apart from the difficulty involved in solving the PY-like equation, two 
major differences with the equilibrium situation should be stressed. The 
first one is that, when applied to a one-dimensional hard-rod system, the 
PY-like equation is not an exact equation: the reason is that, as discussed 
in Section 4, Eq. (41) is not exactly satisfied. The second difference is that 
knowing the pair distribution function (and for the purpose here, it does 
not matter whether it is known exactly or approximately) is not sufficient 
to determine the macroscopic properties of the system, like, for instance, 
S~(p). Additional assumptions [such as a general Kirkwood superposition 
scheme, an approximation of y2(12) within the "core," or an approximate 
interpolation formula] are required. Nonetheless, the pair distribution 
function is by itself a fundamental property characterizing RSA configura- 
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tions. To our knowledge, there is no experimental measure of RSA-like pair 
distribution functions yet available. This situation could change thanks, for 
instance, to neutron studies of ion implantation processes in semiconduc- 
tors (9) or optical microscopy of configurations formed by adsorbed latexes 
on solid surfaces. RSA pair distribution functions of hard disks and hard 
spheres have been obtained at a few densities by computer simulations. ~9'22) 
Their main feature, compared to the corresponding equilibrium pair dis- 
tribution functions, is that they show almost no "structure": oscillations of 
the functions are strongly damped at all densities and the value of 1 is 
reached for interparticle separations (center-to-center) around 2.5 particle 
diameters. We have started studying the numerical solutions of the PY-like 
equation to check if they reproduce the above feature. 

6. A POSSIBLE CONNECTION TO GLASSY STATES 

It was emphasized by Widom that RSA produces "biased" configura- 
tions which cannot be used to describe systems at equilibrium. This "bias" 
can also be viewed as a major advantage: the RSA process is a systematic, 
and relatively simple, way to produce nonequilibrium configurations. As we 
discussed in the Introduction, it may apply to a variety of physical, chemi- 
cal, biological, and ecological situations. It is tempting to increase the list 
by adding other nonequilibrium systems, such as glassy states obtained 
through a kinetic transition. (46'47) Can indeed the RSA process be used to 
generate glassy configurations? We will conclude the paper by discussing 
this question. 

A first obstacle is that RSA configurations are "frozen" by definition 
of the model. To check that the configurations are glassy requires the intro- 
duction of some dynamics in the system of adsorbed particles. Moreover, 
as we argued elsewhere, (47) the simple RSA described in this paper is not 
appropriate since, for a continuous description of space considered here, 
the maximum density for RSA configurations, namely the saturation den- 
sity at the jamming limit, is always less than the freezing density of the 
corresponding equilibrium system. One could think though of a slightly 
different procedure: instead of being initiated from an empty surface (or 
volume, etc.), an RSA process could start from an equilibrium configuration 
of particles on the surface (or in the volume, etc.) characterized by a finite 
density Po. Such an RSA process, satisfying the conditions (i)-(iii) 
described in the Introduction, now has the following interesting feature: it 
reaches asymptotically a new jamming limit, characterized by a saturation 
density Ps(Po) which is higher than Ps(Po = 0). By choosing appropriately 
the initial density Po, one can both avoid crystallization of the system and 
generate nonequilibrium configurations having a higher density than the 
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freezing density. Note that the densities attainable are less than that of the 
random close-packed structures. In three dimensions, for instance, these 
latter structures are known to provide a reasonable first-order representa- 
tion of simple metallic glasses (48) and they presumably correspond, too, to 
the metastable amorphous phase obtained with hard spheres. (49~ The con- 
figurations generated by the modified RSA procedure would then be rele- 
vant for studying nonequilibrium glassy states of hard spheres produced by 
a kinetic transition occurring at densities lower than the random close 
packing. (49) 

The RSA process defined above can still be described exactly with KS- 
like hierarchies (for the distribution functions), Eqs. (11) and (12) and 
Eqs. (17) and (18), associated with Eqs. (1) and (10a) for the time evolu- 
tion of the density: the initial conditions Po and {y]q(1,..., n;po)} are of 
course different from the usual ones, and the one-to-one mapping between 
time and density must be defined on a different interval of densities 
[Po~ < P <Ps(Po)]. It is easy to show that density expansions can be per- 
formed around Po, in which all coefficients are obtained (sequentially) in 

e q  terms of the equilibrium cavity distribution functions {Yn (1 ..... n; P0)}, and 
that the approach to the jamming limit can be analytically treated as in the 
simple RSA case. Application of this new version of the RSA process may 
prove interesting in the case of a two-dimensional system of hard disks, for 
which the existence of glassy states is still an open question. It would then 
allow a systematic investigation of nonequilibrium configurations at den- 
sities lower than that of the random loose- and close-packed structures 
studied recently. (s~ 

A P P E N D I X A .  D I A G R A M M A T I C  NATURE OF THE 
13n c*~ (1 . . . . .  n )  

In this Appendix, we prove that all fl~,(k)(1,...,n), k~>l and n~>2, 
satisfy the following property, which we call property A: fl'n/k)(1,..., n), k~> 1 
and n >~ 2, is a linear combination of "general 1 . . .  n-irreducible" diagrams 
with k field points; the coefficients of the linear combination are rational 
numbers. 

We show also that all fl'l (k) satisfy a similar property, which we call 
property B: fl'l (k), k ~ 1, is a linear combination of "general l-irreducible" 
diagrams wit,  k field points; the coefficients of  the linear combination are 
rational numbers. 

The starting point is that the coefficients fl'n(k)(1,..., n), n ~> 1, of the 
density expansions (33) and (34) can be systematically obtained, one after 
another. Indeed, introducing Eqs. (33) and (34) into Eqs. (17) and (18) and 
using the property Yl = 1 provides 
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k - 1 .  

(2-~-)fl~(k)(12)+yO(2--2--q-)fl'2(q)(12)fl'l(l~-q) 

= k ~. f" ' fd3""d(s§ 
s = l  

s + 2  s + 2  

x I~ l-[ (l+fje) fl'~7~)( 23"''s+2)' k>~l (Ala) 
j - - 2  e = 3  

e>j 

1 {e;%(1,..,i-l,i+ 
Hi= l 

1 
+ k ~f.. .fd(n+l).. .d(n+s)fi(, ,+,l. . . fi(,+s) 

$ = 1  

n+s n+s )} 
X I-[ 1-I l§ R'(k-s) r i--1, i+  1 ..... n+s /a n + s - -  l k ~ - - . ~  

j = l  e = ( n + l )  
jv~i e>j 

k/>l ,  n>~3 (Alb) 

fl'l(') = f d 2 f l  2 (A2a) 

~tl(k)= k l f ' " f  d2""d(s+l)ft2""fll++l, 
s = 2  

s + l  s + l  

x 1-[ 1-[ (1 +fie) fi,~(~ ") (2 . - . s+  1), k~>2 (A2b) 
j=2 e=2 

e>j 

where by convention we take 

fi'n(~ ..... n) = 1, n >~ l (A3) 

From Eqs. (Ala), (A2a), and (A3), one can determine directly fi;~ 
and then, by using Eq. (Alb), all fl',~ n) one after another. On the 
other hand, fl'l a) is obtained by inserting Eq. (A3) in Eq. (A2b). Knowing 
these coefficients, one can use Eq. (Ala) to determine fi;(2)(12) and then 
sequentially all fi•(2/(1 ..... n) by applying Eq. (Alb). fl[(3)is obtainable, too, 
through the use of Eq. (A2b). The procedure can be repeated: once all fl'p(q), 
1 ~< q ~< k - 1 ,  and all tip(k), 1 ~< p ~< n -  1, are known, fi,(k) is obtained by 
applying Eq. (Ala) if n is equal to 2 or Eq. (Alb) if n is larger than 2; 
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fl~(k+ 1)is also determined through Eq. (A2b). Since all the coefficients can 
be obtained sequentially, following the above procedure, we will prove 
property A by mathematical induction. The proof then requires that: 

(i) fl;(1)(12) satisfies property A. 

(ii) If all /~p(q), l<~q<~k-1 and p~>2, and all tip(k), 2<~p<~n-1, 
satisfy property A, then fl'n (k) satisfies property A, too, whatever 
k>~ 1 and n>~2. 

According to Eq. (25), condition (i) is satisfied, so we focus now on condi- 
tion (ii). We assume that all fly), 1 ~< q ~<k-1  and p>~2, and all tip(k), 
2 ~< p ~< n -  1, satisfy property A. fl'n(k)(1 ..... n), k ) 1 and n ~> 2, can be deter- 
mined from Eqs. (A1). We consider then the right-hand side of Eqs. (A1), 
and, in particular, the i = 1 contribution. All other contributions can be 
treated in a similar way (for n = 2, the i = 1 and i = 2 contributions are 
actually identical). The i = 1 contribution is itself the sum of various s con- 
tributions, s = 0, 1 ..... k. The s = 0 contribution is zero for n = 2 and is equal 
to fl~(k_)l(2,... , n)  for n/> 3. By assumption, fl~(k_)~(2,..., n) is a linear combina- 
tion of general 2 - . .  n-irreducible diagrams with k field points. As we noted, 
a general 2. . .n-irreducible diagram with k field points is also a general 
12.--n-irreducible diagram with k field points, so that the s = 0 contribu- 
tion is either null ( n = 2 )  or a linear combination of general 1 . . .n-  
irreducible diagrams with k field points (n ~> 3); the coefficients of the linear 
combination are rational numbers, by assumption. Consider next the s = 1 
contribution, 

fd(n+l)fl(n+l) fl  ( l + f j ( , + l ) ) f l ' ( k - 1 ) ( Z . . . n + l )  (a4) 
j - - 2  

By assumption, fl~'(k-1)(2 . . n + l )  is linear combination of general 
2 . . .  n + 1-irreducible diagrams with ( k - 1 )  field points. Hence, whatever 
the diagram is, the ( k - 1 )  field points lie on at least one continuous path 
joining the point (n + 1) to at least one of the points selected from 2 ..... n 
or joining at least two of the points selected from 2,..., n. The point (n + 1) 
can then be connected to one of the ( n -  1) root points 2,..., n either by a 
path appearing in one of the diagrams forming fl'n (k 1), or directly by an 
f -bond obtained by developing the product 

12I (1 + f j ( ,+ l ) )  
j = 2  

It may also not be connected at all to any of the points 2,...,n. The 
s =  1 contribution can thus be expressed as sum of two contributions: 

822/63/1-2-13 
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one contribution collecting all terms for which the point (n + 1) is con- 
nected, directly by an f-bond or indirectly by a continuous path involving 
other field points, to at least one of the ( n - 1 )  root points 2 ..... n, and 
one contribution collecting all terms for which the point (n + 1) is not 
connected to any of the ( n - 1 )  root points 2 ..... n. By construction, all 
terms of the first contribution are such that the point (n + 1) lies on at least 
one continuous path joining 1 to one of the points selected from 2,..., n; the 
remaining ( k - 1 )  field points lie on at least one continuous path joining 
one pair of points selected from 2 ..... n or one of the points 2 ..... n to 
(n + 1), and therefore to 1 since (n + 1) is connected directly to 1 by an 
f-bond. From these topological arguments we thus derive that this first 
contribution is a linear combination of general 1... n-irreducible diagrams 
with k field points. The coefficients are obviously rational numbers. On the 
other hand, all terms of the second contribution are such that the point 
(n + 1) is not connected to any of the points 2 ..... n. The corresponding 
diagrams are thus reducible. This second contribution is obtained from all 
diagrams appearing in fl,(k-~)(2,..., n, n + 1) which do not involve the point. 
(n+  1). As shown in Appendix B [compare with Eq. (B3b)], the part of 
fl,(k 1)(2 ..... n, n + 1) which satisfies the latter condition is exactly equal to 
fl,(k]-1)(2,." n). The second contribution is thus equal to 

If  d(n+ 1)f l ( ,+l)]f l~ ~ 11(2,...,n) (A5) 

Collecting these results and using Eq. (A2a), we find that the s = ! con- 
tribution can be written as 

If  d(n+ 1)finn+l) 12I (1 +fj(n+l))fl,r 1)(2 ..... n +  1)] 
j = 2 k-gen.  

l .n-irr ,  

+ ~'1"~3'n (k-  1)(2,..., n) (A6) 

where the symbol [ .- .  ] k - g e n ,  1 . . . . . .  indicates that we retain all general 1 ... n- 
irreducible diagrams with k field points (and only those ones) built from 
the term within the brackets. 

We consider now the general s contribution, s E { 1 ..... k }. It is equal to 

~.f ...f d(n+ 1)...d(n+s)fl~n+l)'"fl(n+s ) 

n + s  n + s  

x 1-[ l~ (1 +L'e) a'(k ~) ~V ,,mS) (a7) P n + s  l \ ~ , . . . ,  ,* t 

j = 2  e = n + l  
e > j  
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By assumpt ion,  m(k-s~ ~2 ~'n+s-l~ .... , n + s )  is linear combina t ion  of general 
2 . . .  n +s - i r reduc ib le  d iagrams with ( k - s )  field points, except for k = s, 
where it s imply reduces to 1. General izing the preceding t rea tment  for 
s = 1, we consider a decomposi t ion  of the s contr ibut ion according to the 
number  t of field points selected f rom (n + 1),..., (n + s) which are connec- 
ted, directly by an f - b o n d  or indirectly by a cont inuous pa th  involving 
other  field points, to one of the root  points taken from 2,..., n. The number  
t then runs f rom 0 to s. Consider  first the t = s  contr ibution.  All terms 
included in this contr ibut ion are such that  the sf ield points  
(n + 1),..., (n + s) lie on at least one cont inuous pa th  joining 1 to one of the 
roots  points  2 ..... n. The ( k - s )  remaining field points  lie on at least one 
cont inuous  pa th  joining any pair  of points  selected f rom 2 ..... n or any point  
selected f rom (n + 1) ..... (n + s) to any point  selected f rom 2,..., n. Since the 
points  (n + 1),..., (n + s) are all directly connected to 1 by an f -bond ,  it 
follows that  all terms included in the t = s contr ibut ion are general 1 ... n- 
irreducible diagrams with k field points. F r o m  the structure of expression 
(A7) and the p roper ty  of  the a,(k s~ it is clear that  the t = s contr ibut ion I J n + s - - l ~  

is a linear combina t ion  of general 1- - .n- i r reducib le  diagrams,  the coef- 
ficents of  which are rat ional  numbers .  We consider next an arbi t rary  t con- 
tribufion, 0 ~< t ~< s - 1. It  contains reducible diagrams and m a y  be obta ined 
as follows. Since the points  ( n + l )  ..... (n+s )  correspond to d u m m y  
variables, the t contr ibut ion can be writ ten as C~. times the contr ibut ion 
obta ined by labeling the t points  (n + 1),..., (n + t), where C '  s is a b inomial  
coefficient. By definition, then, all terms forming the contr ibut ion are such 
that  the remaining ( s -  t) points,  (n + t + 1),..., (n + s), are not  connected,  
neither directly nor  indirectly, to any of the root  points 2,..., n. Obviously,  
there is no pa th  connecting any point  selected from 2 ..... n, (n + 1 ),..., (n + t) 
to any point  selected f rom (n + t + 1) ..... (n + s). The "labeled" t contr ibu-  
t ion is thus obta ined  f rom the par t  of o,(kos) t 2 pn + ~- it "'" n + s) containing all 
disconnected d iagrams obta inable  as a p roduc t  of a d iagram involving 
the points  2 ..... n, (n + 1) ..... (n + t) and a d iagram involving (n + t + 1),..., 
(n + s). As discussed in Appendix B [ c o m p a r e  with Eq. (B6b)] ,  this par t  of  
fl,~k s) t2 + s) is exactly equal to n + s  1~ , . . . ,  n 

k - - s  

E , ( K )  f l ~ _ , ( n + t + l  ..... n + s ) a ' ~ k - ~ - m ( 2  ..... n , n + l  ..... n + t )  i f s - t > ~ 2  P n + t - - 1  
K = O  

and to 

f i ' ( •  s) t9 n + t )  if t = s - 1  n + t - -  1 ' ~ ' " "  

The t contr ibut ion is thus obtained from 
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C~. ~ "  [ f  ... f d(n+ t + 1 ) " ' d ( n +  s) fl(~+,+l)'"Jl{n+~) 
s! K=o 

n+s n+s )] 
X ~ I  E ( 1  - I - f i e )  s I)s t t n + t + l , . . . , n + s  

J = { n + t +  l) e = ( n + t +  l) 
e > j  

n + t  n + t  ] 

x [I I] (l+f~e)Y%+U'()(2,...,n+O (as) 
j = 2  e = ( n + l )  

e > j  

where only the K =  0 term must  be kept  when t = s - 1 .  We emphasize,  
though,  that  the t term is obta ined f rom Eq. (A8), but  is not  equal  to it. 
Indeed the second factor involving the points 2 ..... (n + t) could still contain 
reducible diagrams,  for which some of the t points  (n + 1 ) ..... (n + t) are not  
connected,  directly or indirectly, to at least one of the root  points  2,..., n. 
We must  keep in this second factor only those terms for which the t points  
( n +  1),..., ( n +  t) are connected to at least one of the points 2 ..... n. As 
proven  above,  it means keeping all general 1 .-. n-irreducible diagrams with 
( k -  s - K +  t) field points. The t contr ibut ion is then equal to 

k " 1 ( s - t ) ,  
K : O  

n+s n+s )1 
x I~ f I  ( l + f ~ t ~ ' ( K k n + t + l , " ' ,  n + s  J je !  V s -- t~ 

j = n + t + l  e = n + t + l  
e > j  

f...f 
n + t  n + t  1 

x FI FI (l+Le)~'{~ s-KW2 ~.,+,+~ , ..... n+ t )  (A9) 
j ~ 2  e = ( n + l )  (k s--K+t)-gen 

e > j 1 - -- n-irr  

where only the K =  0 term must  be kept when t = s -  1. 
By collecting all the preceding results, we can express the i =  1 

contr ibut ion to the r ight-hand side of Eqs. (A1) as 

l [ f "" f d(n + l ) ""d(n + s) f l{~+ ~ ) " ' A { . + ,  
s=O S.L 

n+s n+, R,{k s)(2 ] • 1-I 1~ ( 1 + ~ o ) ~ . + ~ _ , ,  ..... n + ~ )  
j ~ 2  e = n + l  J k-gen 

e > j 1 �9 - - n-irr  
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il; 1 + d ( n + s ) f l ( n + ~ )  ( s -  1)! 
s = l  

x [ f  ' ' ' f  d ( n J f  - 1 ) ,  , - d ( / ~ - ~ - s - 1 ) f l ( n + l ) ' ' ' f l ( n + s  1) 

n+s--1 n + s  1 ) 7  J 
x Fl Fi ~" n + s - 2 ~  "''~ 

j = 2  e = n + l  (k-- 1)-gen 
e > j 1 .-- n - i r r  

s=~ , = o x = o ( S - t )  ! . . . f d ( n + t + l ) . . . d ( n + s ) f l ( , + , + x l . . . f ~ ( ~ + , )  

+ 1~[ ( l + f J ~ ) f l ' ( X ) ( n + t + l , . . . ,  t 
j = n + t + l  e = n + t + l  

e > j  

x . . . .  d ( n + l ) . . . d ( n + t ) f ~ ( , + ~ ) . . . f l ( , + ~ )  
t! 
n+~ n+t )] 

X I-[  U (1 -1"- f j e )  k'n+t--l~'(k--'--K)( 2 ..... n + t ( A 1 0 )  
j = 2  e = n + l  (k s - -K+ t ) -gen  

e > j  1 - --n-lrr 

The third term of the preceding expression can be rewritten by first 
changing the variable K into q = k -  s - K + t, then permuting the order in 
which the sums are performed according to 

k s--2 k - - s + t  k - -2  q t + k  q 

E E  E E 
s = l  t = 0  q = t  q = 0  t = 0  s = t + 2  

and finally changing the variable s into w = s -  t. By inspection of Eqs. (A1) 
and (A10) we first obtain that if fi'n (k) satisfies property A, it is necessarily 
given by Eq. (35). Using then Eq. (35) for all fi'n (q), q < ~ k - 1 ,  which by 
assumption satisfy property A, together with Eqs. (A2a) and (A2b), we 
finally derive that the right-hand side of Eqs. (A1) can be exactly written as 

/=1 s=~ ~ "'" d ( n + l ) . . . d ( n + s ) f , ( , + 1 ) . . . f i ( n + s )  

~+s n+$ 1 • 17 I~ (l+Le) ~'(k,-.+,s)(1,...,i-1, i + 1 1  ..... n + s )  
j = 1 e = n + 1 -I  k - g e n  
J•i e>j  1 - - - n q r r  

q- qE O= fl'n(q)(1 ..... 1"1) fl'l (k-q)  ( A l l )  
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so that fl',(k)(1 ..... n) is indeed given by Eq. (35). This completes the proof 
of condition (ii). 

Having proven that all fl,(k), k >~ 1 and n i> 2, satisfy property A, it is 
now a trivial matter to prove that all fl'ff), k >/1, satisfy property B. Accor- 
ding to Eq. (A2a), it is obviously true for fl'~(l). For higher-order fi'ff~, 
k t> 2, given by Eq. (A2b), we can use simple topological arguments which 
would apply similarly to the equilibrium situation. Consider any s con- 
tribution, 2 ~< s ~< k. Any term included in this contribution is such that all 
(k - s) field points appearing in f l ' f f - ' ) (2  ..... s + 1 ) lie on at least one con- 
tinuous path joining one pair of points selected from 2,..., s + ! (proper- 
ty A). Since all field points 2 ..... (s + 1) are directly connected to 1 by an 
f-bond, the remaining ( k -  s) field points are "multiply connected" to point 
1. The k field points are thus either directly connected only to point 1 and 
to no other point [which is the case for some of the points 2 ..... ( s+  1)], 
or "multiply connected" to 1 [which is the case for the remaining points 
taken from 2,..., (s + 1) and the other ( k - s )  field points]. This corresponds 
to the definition of general 1-irreducible diagrams with k field points. From 
the structure of the right-hand side of Eq. (A2b) and the fact that all fl's (k-s) 
satisfy property A, it is moreover clear that fl'ff) is a linear combination of 
general 1-irreducible diagrams, the coefficients of which are rational 
numbers. 

APPENDIX B. ADDITIONAL PROPERTIES OF THE I3~m(1.--n) 

We start from Eq. (34), where the fl'~(k)(1 ..... n) are linear combinations 
of general 1 --- n-irreducible diagrams with k field points. As we have noted, 
any general il..-/m-irreducible diagram with k field points where {il-- '  i,,} 
is any ordered set of points selected from 1,..., n is also a general 1- . .n-  
irreducible diagram with k field points, fl'n(k)(1,..., n) can thus be written as 

n 

n)= E Z C~n, ~ ({re}n) (B1) 
m = 2  {m}n 

where the symbol {rn}n denotes any of the (ordered) sets of m points 
r(k) {il "''ira} selected from the n points 1,..., n. The 5nm ({re}n) is the part of 

fl'n(k)(1 ..... n) that contains only those general 1-..n-irreducible diagrams 
with k field points which are also general {re}n-irreducible diagrams with 
k field points and which moreover are such that all points taken from {m}n 
are connected to at least one field point by an f-bond (as a consequence all 
points selected from {m}n are connected to at least one other point selected 
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from {m}. by a continuous path). A first property is then that 6,m ('(x) {m}), 
n ~> m, is independent of n: 

~(k) -- t(k) ,(k) m ({m}), ~>m anm ({m}) =~5 (B2) --C~mm({m}) n 

Proof is obtained by noticing that whenever the ( n - m )  particles corre- 
sponding to the set of positions built from {l---n} by subtracting the 
points taken from {m}, become infinitely separated from each other and 
from the remaining m particles, the n-particle distribution function reduces 
exactly to the m-particle distribution function associated with the positions 
{m }, ; accordingly, 

y,(1,..., n; p) ~ ym({m}~; p) (B3a) 

fl;r n) --+ f12~)( {m }.) (B3b) 

This is due to the fact that "interactions" between particles are short- 
ranged: it is valid for the RSA as well as for the equilibrium situation. 
Going from Eqs. (B3) to Eq. (B2) only requires the definition of 6',~ ) and 
the short-range nature of the f-bonds. 

The/Y, ff)(1 ..... n) can be further decomposed by defining a "connected" 
and a "disconnected" part of 6'n(k)({n}), such that 

=a. ({n}) + (B4) 

The "connected" part 6'n(k)~176 is the linear combination of those 
diagrams appearing in 6'n(~)({n}) which are such that any pair of points 
selected from {n} is connected by at least one continuous path. This path 
passes through at least one of the k field points. The "disconnected" part 
is zero for k ~< 1 and n ~< 3 and otherwise can be expressed in terms of 
"connected" parts through 

min{k,N} ~ n l k l ~] 
t (k)dis  n ~ P (v)k con ( ({ })= E E E E {n,})n (BS) ny 

a - 2  y = l  n ~ = 2  {n,/}n k 7 = 1  "~=1 

where the sums over nT, {n~},, and k s are restricted by the conditions 

n~ = n (B6a) 
7 

@ {n~},= {n} (B6b) 
Y 

2 k, = k (B6c) 
7 
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The symbol @~ {n ,} ,=  {n} indicates that the :r sets {sT}, ? = 1  ..... ~, 
realize an exact partition of {n}, and N is equal to n/2 if n is even and to 
( n - 1 ) / 2  if n is odd. Equation (B5) may be derived by considering the 
following property of the distribution functions (a property which, for the 
same reasons as given above, is valid for the RSA as well as for the equi- 
librium situation): if the ~ sets {G}-, 7 = 1,..., e, realize an exact partition 
of {n}, with 2 ~< n 7 ~< n - 1 and 2 ~< cr ~< N, and if the ~ ensembles of particles 
associated with the ~ sets of positions {n~}, go infinitely far from each 
other, then the n-particle distribution function reduces exactly to a product 
of n<particle distribution functions, 7 -- 1,..., ~; accordingly, 

y~({n};p)--* [I y~.({n:,},,;p) (B7a) 
"~,=1 

k 

kT~0 7~1 

ky=k 
.f 

(B7b) 

and as a consequence 

k--1 i~ I 6'n~({n}) --, ~ 6'~'~(~n ~ ~ k>>.2 n 7 \ 1  ~ J n l ,  

k7-1  y = l  ( B S )  

k./ = k 

Going from Eq. (B8) to Eq. (B5) uses the fact that 6',t~S({n}) can be 
uniquely decomposed in terms collecting products of connected general 
irreducible diagrams such that the root points associated with these 
latter diagrams correspond to an exact partition of {n }. Taking moreover 
into account the short-range nature of the f-bonds, one finds that the 
decomposition of 6',,(k)diS({n}) is that given by Eq. (B5). 

By collecting all preceding results, we obtain finally 

min{k,N} k 

c~ ,~, ({m~}~) (B9) 
m = 2  { m } n  c~;1 7~1 roT--1 {roT} m k7--1 7=1 

where the sums over r G,  {rn~ }m, and k 7 are restricted by the conditions 

in, = m (B10a) 
7 

@ {m-e}m = {m} (Sl0b) 
7 

Y~ k~ = k (mOc) 
), 
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APPENDIX C. ON THESUPERPOSITION APPROXIMATION 

Comparing Eqs. (25) and (26) with their equilibrium counterparts, it 
is tempting to write y,, in the following compact form: 

k I p,k (k) 12 y2(12;p)=-~ f~ dp' p' exp ~= ilk ( ) j  (C1) 

y.( l  ..... n;p) SA _ff~P = Y n  (1,..., n;  p )  dpt ptn 1 FJ 0 

x exp p'kfl~k)(1,..., n , n >/3 (C2) 
k 1 

where ,~tVk)(1,,..., n), n/> 2, would be a linear combination of simple 1 �9 �9 - n- 
irreducible diagrams with k field points and ySa(1 ..... n; p) would be defined 
by a formula similar to Eq. (32). Equations (C1) and (C2) would then be 
the RSA equivalent of Eqs. (30) and (31). It is indeed easy to check that 
Eq. (C2) is true ul~ to order p, with 

f l (1) ( |  n) = n) = ( i ) ~  (C3) /~(l)eq(l 

and that Eq. (C1) is true up to order p3 with 

~g')(12) = ~ .~1)eq(12) = O  ~ @ (C4a) 

f l ( 2 2 ) = ~ ( +  + ) + ( +  + ) (C4b) 

fl~3/(12) is linear combination of simple 1, 2-irreducible diagrams with three 
field points, but its expression is too long to be reproduced here. Unfor- 
tunately, Eqs. (C1) and (C2) are no longer valid for higher-order terms. 
For instance, the p2 term of the expansion of y3(123) is actually given by 

fl;(2)(123)= 3 (2) 1 (1) 2 {~[f13 (123)+5fl3 (123)] 
+ �88 + fl~(~)(13) + ~(1)(23)3 
+ [fl~(2)(12) + fl~(2)(13) + fl~(2)(23) + fl~(~)(12) fl'2m(13) 

+/~;('(12) ~;(1)(23) + ~(*)(13) fl~(u(23)3 } 

ro(1)(123 ) + ~ l P 3  , [fl~(~)(12) + fl~(U(13) + fl'2(1)(23)] 

+ fl~(~)(12) fl~(~)(13) + fl~(u(12) fl~(1)(23) 

+ fl2(1)(13) fl~(U(23) } (C5) 
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where fl(2)(123) is linear combination of simple 123-irreducible diagrams 3 
with two field points; all other coefficients have already been defined. The 
contribution within the first curly brackets of the right-hand side is that 
predicted by Eq. (C2). The presence of an additional contribution in the 
right-hand side of Eq. (C5) thus proves the inadequacy of Eq. (C2). 

Two comments can be made. First, even when geometric constraints 
impose that the simple 123-irreducible diagrams vanish as is the case in the 
expansion of g3(1, 2, 3) in one dimension, the correction to Eq. (C2) per- 
sists: as seen then from Eq. (C5), the superposition approximation is not 
exact in one dimension. A similar conclusion could be reached for higher- 
order distribution functions. Second, the size of the correction appears 
quite small, at least at the order p2. It probably increases as the power of 
p increases so that the superposition approximation is certainly wrong at 
high densities, close to the jamming limit. However, the superposition 
approximation may be reasonably good for low and intermediate densities. 
Such a statement should of course be tested numerically. 

Equation (C5) has in turn consequences for the p4 term of the expan- 
sion of y2(12; p). It is indeed straightforward to derive that 

3/~2(4)(12) = {fl(24)(12) + fi(23)(12) fi(21)(12) + �89 + ~2')(12) 2] 

where fi~24)(12) is a linear combination of simple 12-irreducible diagrams 
with four field points. The contribution within the first curly brackets is 
that given by the application of Eq. (C1), and the second contribution 
measures the correction to Eq. (C1). Here again, the size of the correction 
seems rather small, but it is expected to increase as the power of p 
increases. 
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